summaryrefslogtreecommitdiff
path: root/lib/dojo/_base/declare.js.uncompressed.js
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dojo/_base/declare.js.uncompressed.js')
-rw-r--r--lib/dojo/_base/declare.js.uncompressed.js1045
1 files changed, 1045 insertions, 0 deletions
diff --git a/lib/dojo/_base/declare.js.uncompressed.js b/lib/dojo/_base/declare.js.uncompressed.js
new file mode 100644
index 000000000..cb25e2873
--- /dev/null
+++ b/lib/dojo/_base/declare.js.uncompressed.js
@@ -0,0 +1,1045 @@
+define("dojo/_base/declare", ["./kernel", "../has", "./lang"], function(dojo, has, lang){
+ // module:
+ // dojo/_base/declare
+
+ var mix = lang.mixin, op = Object.prototype, opts = op.toString,
+ xtor = new Function, counter = 0, cname = "constructor";
+
+ function err(msg, cls){ throw new Error("declare" + (cls ? " " + cls : "") + ": " + msg); }
+
+ // C3 Method Resolution Order (see http://www.python.org/download/releases/2.3/mro/)
+ function c3mro(bases, className){
+ var result = [], roots = [{cls: 0, refs: []}], nameMap = {}, clsCount = 1,
+ l = bases.length, i = 0, j, lin, base, top, proto, rec, name, refs;
+
+ // build a list of bases naming them if needed
+ for(; i < l; ++i){
+ base = bases[i];
+ if(!base){
+ err("mixin #" + i + " is unknown. Did you use dojo.require to pull it in?", className);
+ }else if(opts.call(base) != "[object Function]"){
+ err("mixin #" + i + " is not a callable constructor.", className);
+ }
+ lin = base._meta ? base._meta.bases : [base];
+ top = 0;
+ // add bases to the name map
+ for(j = lin.length - 1; j >= 0; --j){
+ proto = lin[j].prototype;
+ if(!proto.hasOwnProperty("declaredClass")){
+ proto.declaredClass = "uniqName_" + (counter++);
+ }
+ name = proto.declaredClass;
+ if(!nameMap.hasOwnProperty(name)){
+ nameMap[name] = {count: 0, refs: [], cls: lin[j]};
+ ++clsCount;
+ }
+ rec = nameMap[name];
+ if(top && top !== rec){
+ rec.refs.push(top);
+ ++top.count;
+ }
+ top = rec;
+ }
+ ++top.count;
+ roots[0].refs.push(top);
+ }
+
+ // remove classes without external references recursively
+ while(roots.length){
+ top = roots.pop();
+ result.push(top.cls);
+ --clsCount;
+ // optimization: follow a single-linked chain
+ while(refs = top.refs, refs.length == 1){
+ top = refs[0];
+ if(!top || --top.count){
+ // branch or end of chain => do not end to roots
+ top = 0;
+ break;
+ }
+ result.push(top.cls);
+ --clsCount;
+ }
+ if(top){
+ // branch
+ for(i = 0, l = refs.length; i < l; ++i){
+ top = refs[i];
+ if(!--top.count){
+ roots.push(top);
+ }
+ }
+ }
+ }
+ if(clsCount){
+ err("can't build consistent linearization", className);
+ }
+
+ // calculate the superclass offset
+ base = bases[0];
+ result[0] = base ?
+ base._meta && base === result[result.length - base._meta.bases.length] ?
+ base._meta.bases.length : 1 : 0;
+
+ return result;
+ }
+
+ function inherited(args, a, f){
+ var name, chains, bases, caller, meta, base, proto, opf, pos,
+ cache = this._inherited = this._inherited || {};
+
+ // crack arguments
+ if(typeof args == "string"){
+ name = args;
+ args = a;
+ a = f;
+ }
+ f = 0;
+
+ caller = args.callee;
+ name = name || caller.nom;
+ if(!name){
+ err("can't deduce a name to call inherited()", this.declaredClass);
+ }
+
+ meta = this.constructor._meta;
+ bases = meta.bases;
+
+ pos = cache.p;
+ if(name != cname){
+ // method
+ if(cache.c !== caller){
+ // cache bust
+ pos = 0;
+ base = bases[0];
+ meta = base._meta;
+ if(meta.hidden[name] !== caller){
+ // error detection
+ chains = meta.chains;
+ if(chains && typeof chains[name] == "string"){
+ err("calling chained method with inherited: " + name, this.declaredClass);
+ }
+ // find caller
+ do{
+ meta = base._meta;
+ proto = base.prototype;
+ if(meta && (proto[name] === caller && proto.hasOwnProperty(name) || meta.hidden[name] === caller)){
+ break;
+ }
+ }while(base = bases[++pos]); // intentional assignment
+ pos = base ? pos : -1;
+ }
+ }
+ // find next
+ base = bases[++pos];
+ if(base){
+ proto = base.prototype;
+ if(base._meta && proto.hasOwnProperty(name)){
+ f = proto[name];
+ }else{
+ opf = op[name];
+ do{
+ proto = base.prototype;
+ f = proto[name];
+ if(f && (base._meta ? proto.hasOwnProperty(name) : f !== opf)){
+ break;
+ }
+ }while(base = bases[++pos]); // intentional assignment
+ }
+ }
+ f = base && f || op[name];
+ }else{
+ // constructor
+ if(cache.c !== caller){
+ // cache bust
+ pos = 0;
+ meta = bases[0]._meta;
+ if(meta && meta.ctor !== caller){
+ // error detection
+ chains = meta.chains;
+ if(!chains || chains.constructor !== "manual"){
+ err("calling chained constructor with inherited", this.declaredClass);
+ }
+ // find caller
+ while(base = bases[++pos]){ // intentional assignment
+ meta = base._meta;
+ if(meta && meta.ctor === caller){
+ break;
+ }
+ }
+ pos = base ? pos : -1;
+ }
+ }
+ // find next
+ while(base = bases[++pos]){ // intentional assignment
+ meta = base._meta;
+ f = meta ? meta.ctor : base;
+ if(f){
+ break;
+ }
+ }
+ f = base && f;
+ }
+
+ // cache the found super method
+ cache.c = f;
+ cache.p = pos;
+
+ // now we have the result
+ if(f){
+ return a === true ? f : f.apply(this, a || args);
+ }
+ // intentionally no return if a super method was not found
+ }
+
+ function getInherited(name, args){
+ if(typeof name == "string"){
+ return this.__inherited(name, args, true);
+ }
+ return this.__inherited(name, true);
+ }
+
+ function inherited__debug(args, a1, a2){
+ var f = this.getInherited(args, a1);
+ if(f){ return f.apply(this, a2 || a1 || args); }
+ // intentionally no return if a super method was not found
+ }
+
+ var inheritedImpl = dojo.config.isDebug ? inherited__debug : inherited;
+
+ // emulation of "instanceof"
+ function isInstanceOf(cls){
+ var bases = this.constructor._meta.bases;
+ for(var i = 0, l = bases.length; i < l; ++i){
+ if(bases[i] === cls){
+ return true;
+ }
+ }
+ return this instanceof cls;
+ }
+
+ function mixOwn(target, source){
+ // add props adding metadata for incoming functions skipping a constructor
+ for(var name in source){
+ if(name != cname && source.hasOwnProperty(name)){
+ target[name] = source[name];
+ }
+ }
+ if(has("bug-for-in-skips-shadowed")){
+ for(var extraNames= lang._extraNames, i= extraNames.length; i;){
+ name = extraNames[--i];
+ if(name != cname && source.hasOwnProperty(name)){
+ target[name] = source[name];
+ }
+ }
+ }
+ }
+
+ // implementation of safe mixin function
+ function safeMixin(target, source){
+ // summary:
+ // Mix in properties skipping a constructor and decorating functions
+ // like it is done by declare().
+ // target: Object
+ // Target object to accept new properties.
+ // source: Object
+ // Source object for new properties.
+ // description:
+ // This function is used to mix in properties like lang.mixin does,
+ // but it skips a constructor property and decorates functions like
+ // declare() does.
+ //
+ // It is meant to be used with classes and objects produced with
+ // declare. Functions mixed in with dojo.safeMixin can use
+ // this.inherited() like normal methods.
+ //
+ // This function is used to implement extend() method of a constructor
+ // produced with declare().
+ //
+ // example:
+ // | var A = declare(null, {
+ // | m1: function(){
+ // | console.log("A.m1");
+ // | },
+ // | m2: function(){
+ // | console.log("A.m2");
+ // | }
+ // | });
+ // | var B = declare(A, {
+ // | m1: function(){
+ // | this.inherited(arguments);
+ // | console.log("B.m1");
+ // | }
+ // | });
+ // | B.extend({
+ // | m2: function(){
+ // | this.inherited(arguments);
+ // | console.log("B.m2");
+ // | }
+ // | });
+ // | var x = new B();
+ // | dojo.safeMixin(x, {
+ // | m1: function(){
+ // | this.inherited(arguments);
+ // | console.log("X.m1");
+ // | },
+ // | m2: function(){
+ // | this.inherited(arguments);
+ // | console.log("X.m2");
+ // | }
+ // | });
+ // | x.m2();
+ // | // prints:
+ // | // A.m1
+ // | // B.m1
+ // | // X.m1
+
+ var name, t;
+ // add props adding metadata for incoming functions skipping a constructor
+ for(name in source){
+ t = source[name];
+ if((t !== op[name] || !(name in op)) && name != cname){
+ if(opts.call(t) == "[object Function]"){
+ // non-trivial function method => attach its name
+ t.nom = name;
+ }
+ target[name] = t;
+ }
+ }
+ if(has("bug-for-in-skips-shadowed")){
+ for(var extraNames= lang._extraNames, i= extraNames.length; i;){
+ name = extraNames[--i];
+ t = source[name];
+ if((t !== op[name] || !(name in op)) && name != cname){
+ if(opts.call(t) == "[object Function]"){
+ // non-trivial function method => attach its name
+ t.nom = name;
+ }
+ target[name] = t;
+ }
+ }
+ }
+ return target;
+ }
+
+ function extend(source){
+ declare.safeMixin(this.prototype, source);
+ return this;
+ }
+
+ function createSubclass(mixins){
+ return declare([this].concat(mixins));
+ }
+
+ // chained constructor compatible with the legacy declare()
+ function chainedConstructor(bases, ctorSpecial){
+ return function(){
+ var a = arguments, args = a, a0 = a[0], f, i, m,
+ l = bases.length, preArgs;
+
+ if(!(this instanceof a.callee)){
+ // not called via new, so force it
+ return applyNew(a);
+ }
+
+ //this._inherited = {};
+ // perform the shaman's rituals of the original declare()
+ // 1) call two types of the preamble
+ if(ctorSpecial && (a0 && a0.preamble || this.preamble)){
+ // full blown ritual
+ preArgs = new Array(bases.length);
+ // prepare parameters
+ preArgs[0] = a;
+ for(i = 0;;){
+ // process the preamble of the 1st argument
+ a0 = a[0];
+ if(a0){
+ f = a0.preamble;
+ if(f){
+ a = f.apply(this, a) || a;
+ }
+ }
+ // process the preamble of this class
+ f = bases[i].prototype;
+ f = f.hasOwnProperty("preamble") && f.preamble;
+ if(f){
+ a = f.apply(this, a) || a;
+ }
+ // one peculiarity of the preamble:
+ // it is called if it is not needed,
+ // e.g., there is no constructor to call
+ // let's watch for the last constructor
+ // (see ticket #9795)
+ if(++i == l){
+ break;
+ }
+ preArgs[i] = a;
+ }
+ }
+ // 2) call all non-trivial constructors using prepared arguments
+ for(i = l - 1; i >= 0; --i){
+ f = bases[i];
+ m = f._meta;
+ f = m ? m.ctor : f;
+ if(f){
+ f.apply(this, preArgs ? preArgs[i] : a);
+ }
+ }
+ // 3) continue the original ritual: call the postscript
+ f = this.postscript;
+ if(f){
+ f.apply(this, args);
+ }
+ };
+ }
+
+
+ // chained constructor compatible with the legacy declare()
+ function singleConstructor(ctor, ctorSpecial){
+ return function(){
+ var a = arguments, t = a, a0 = a[0], f;
+
+ if(!(this instanceof a.callee)){
+ // not called via new, so force it
+ return applyNew(a);
+ }
+
+ //this._inherited = {};
+ // perform the shaman's rituals of the original declare()
+ // 1) call two types of the preamble
+ if(ctorSpecial){
+ // full blown ritual
+ if(a0){
+ // process the preamble of the 1st argument
+ f = a0.preamble;
+ if(f){
+ t = f.apply(this, t) || t;
+ }
+ }
+ f = this.preamble;
+ if(f){
+ // process the preamble of this class
+ f.apply(this, t);
+ // one peculiarity of the preamble:
+ // it is called even if it is not needed,
+ // e.g., there is no constructor to call
+ // let's watch for the last constructor
+ // (see ticket #9795)
+ }
+ }
+ // 2) call a constructor
+ if(ctor){
+ ctor.apply(this, a);
+ }
+ // 3) continue the original ritual: call the postscript
+ f = this.postscript;
+ if(f){
+ f.apply(this, a);
+ }
+ };
+ }
+
+ // plain vanilla constructor (can use inherited() to call its base constructor)
+ function simpleConstructor(bases){
+ return function(){
+ var a = arguments, i = 0, f, m;
+
+ if(!(this instanceof a.callee)){
+ // not called via new, so force it
+ return applyNew(a);
+ }
+
+ //this._inherited = {};
+ // perform the shaman's rituals of the original declare()
+ // 1) do not call the preamble
+ // 2) call the top constructor (it can use this.inherited())
+ for(; f = bases[i]; ++i){ // intentional assignment
+ m = f._meta;
+ f = m ? m.ctor : f;
+ if(f){
+ f.apply(this, a);
+ break;
+ }
+ }
+ // 3) call the postscript
+ f = this.postscript;
+ if(f){
+ f.apply(this, a);
+ }
+ };
+ }
+
+ function chain(name, bases, reversed){
+ return function(){
+ var b, m, f, i = 0, step = 1;
+ if(reversed){
+ i = bases.length - 1;
+ step = -1;
+ }
+ for(; b = bases[i]; i += step){ // intentional assignment
+ m = b._meta;
+ f = (m ? m.hidden : b.prototype)[name];
+ if(f){
+ f.apply(this, arguments);
+ }
+ }
+ };
+ }
+
+ // forceNew(ctor)
+ // return a new object that inherits from ctor.prototype but
+ // without actually running ctor on the object.
+ function forceNew(ctor){
+ // create object with correct prototype using a do-nothing
+ // constructor
+ xtor.prototype = ctor.prototype;
+ var t = new xtor;
+ xtor.prototype = null; // clean up
+ return t;
+ }
+
+ // applyNew(args)
+ // just like 'new ctor()' except that the constructor and its arguments come
+ // from args, which must be an array or an arguments object
+ function applyNew(args){
+ // create an object with ctor's prototype but without
+ // calling ctor on it.
+ var ctor = args.callee, t = forceNew(ctor);
+ // execute the real constructor on the new object
+ ctor.apply(t, args);
+ return t;
+ }
+
+ function declare(className, superclass, props){
+ // summary:
+ // Create a feature-rich constructor from compact notation.
+ // className: String?
+ // The optional name of the constructor (loosely, a "class")
+ // stored in the "declaredClass" property in the created prototype.
+ // It will be used as a global name for a created constructor.
+ // superclass: Function|Function[]
+ // May be null, a Function, or an Array of Functions. This argument
+ // specifies a list of bases (the left-most one is the most deepest
+ // base).
+ // props: Object
+ // An object whose properties are copied to the created prototype.
+ // Add an instance-initialization function by making it a property
+ // named "constructor".
+ // returns: dojo/_base/declare.__DeclareCreatedObject
+ // New constructor function.
+ // description:
+ // Create a constructor using a compact notation for inheritance and
+ // prototype extension.
+ //
+ // Mixin ancestors provide a type of multiple inheritance.
+ // Prototypes of mixin ancestors are copied to the new class:
+ // changes to mixin prototypes will not affect classes to which
+ // they have been mixed in.
+ //
+ // Ancestors can be compound classes created by this version of
+ // declare(). In complex cases all base classes are going to be
+ // linearized according to C3 MRO algorithm
+ // (see http://www.python.org/download/releases/2.3/mro/ for more
+ // details).
+ //
+ // "className" is cached in "declaredClass" property of the new class,
+ // if it was supplied. The immediate super class will be cached in
+ // "superclass" property of the new class.
+ //
+ // Methods in "props" will be copied and modified: "nom" property
+ // (the declared name of the method) will be added to all copied
+ // functions to help identify them for the internal machinery. Be
+ // very careful, while reusing methods: if you use the same
+ // function under different names, it can produce errors in some
+ // cases.
+ //
+ // It is possible to use constructors created "manually" (without
+ // declare()) as bases. They will be called as usual during the
+ // creation of an instance, their methods will be chained, and even
+ // called by "this.inherited()".
+ //
+ // Special property "-chains-" governs how to chain methods. It is
+ // a dictionary, which uses method names as keys, and hint strings
+ // as values. If a hint string is "after", this method will be
+ // called after methods of its base classes. If a hint string is
+ // "before", this method will be called before methods of its base
+ // classes.
+ //
+ // If "constructor" is not mentioned in "-chains-" property, it will
+ // be chained using the legacy mode: using "after" chaining,
+ // calling preamble() method before each constructor, if available,
+ // and calling postscript() after all constructors were executed.
+ // If the hint is "after", it is chained as a regular method, but
+ // postscript() will be called after the chain of constructors.
+ // "constructor" cannot be chained "before", but it allows
+ // a special hint string: "manual", which means that constructors
+ // are not going to be chained in any way, and programmer will call
+ // them manually using this.inherited(). In the latter case
+ // postscript() will be called after the construction.
+ //
+ // All chaining hints are "inherited" from base classes and
+ // potentially can be overridden. Be very careful when overriding
+ // hints! Make sure that all chained methods can work in a proposed
+ // manner of chaining.
+ //
+ // Once a method was chained, it is impossible to unchain it. The
+ // only exception is "constructor". You don't need to define a
+ // method in order to supply a chaining hint.
+ //
+ // If a method is chained, it cannot use this.inherited() because
+ // all other methods in the hierarchy will be called automatically.
+ //
+ // Usually constructors and initializers of any kind are chained
+ // using "after" and destructors of any kind are chained as
+ // "before". Note that chaining assumes that chained methods do not
+ // return any value: any returned value will be discarded.
+ //
+ // example:
+ // | declare("my.classes.bar", my.classes.foo, {
+ // | // properties to be added to the class prototype
+ // | someValue: 2,
+ // | // initialization function
+ // | constructor: function(){
+ // | this.myComplicatedObject = new ReallyComplicatedObject();
+ // | },
+ // | // other functions
+ // | someMethod: function(){
+ // | doStuff();
+ // | }
+ // | });
+ //
+ // example:
+ // | var MyBase = declare(null, {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ // | var MyClass1 = declare(MyBase, {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ // | var MyClass2 = declare(MyBase, {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ // | var MyDiamond = declare([MyClass1, MyClass2], {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ //
+ // example:
+ // | var F = function(){ console.log("raw constructor"); };
+ // | F.prototype.method = function(){
+ // | console.log("raw method");
+ // | };
+ // | var A = declare(F, {
+ // | constructor: function(){
+ // | console.log("A.constructor");
+ // | },
+ // | method: function(){
+ // | console.log("before calling F.method...");
+ // | this.inherited(arguments);
+ // | console.log("...back in A");
+ // | }
+ // | });
+ // | new A().method();
+ // | // will print:
+ // | // raw constructor
+ // | // A.constructor
+ // | // before calling F.method...
+ // | // raw method
+ // | // ...back in A
+ //
+ // example:
+ // | var A = declare(null, {
+ // | "-chains-": {
+ // | destroy: "before"
+ // | }
+ // | });
+ // | var B = declare(A, {
+ // | constructor: function(){
+ // | console.log("B.constructor");
+ // | },
+ // | destroy: function(){
+ // | console.log("B.destroy");
+ // | }
+ // | });
+ // | var C = declare(B, {
+ // | constructor: function(){
+ // | console.log("C.constructor");
+ // | },
+ // | destroy: function(){
+ // | console.log("C.destroy");
+ // | }
+ // | });
+ // | new C().destroy();
+ // | // prints:
+ // | // B.constructor
+ // | // C.constructor
+ // | // C.destroy
+ // | // B.destroy
+ //
+ // example:
+ // | var A = declare(null, {
+ // | "-chains-": {
+ // | constructor: "manual"
+ // | }
+ // | });
+ // | var B = declare(A, {
+ // | constructor: function(){
+ // | // ...
+ // | // call the base constructor with new parameters
+ // | this.inherited(arguments, [1, 2, 3]);
+ // | // ...
+ // | }
+ // | });
+ //
+ // example:
+ // | var A = declare(null, {
+ // | "-chains-": {
+ // | m1: "before"
+ // | },
+ // | m1: function(){
+ // | console.log("A.m1");
+ // | },
+ // | m2: function(){
+ // | console.log("A.m2");
+ // | }
+ // | });
+ // | var B = declare(A, {
+ // | "-chains-": {
+ // | m2: "after"
+ // | },
+ // | m1: function(){
+ // | console.log("B.m1");
+ // | },
+ // | m2: function(){
+ // | console.log("B.m2");
+ // | }
+ // | });
+ // | var x = new B();
+ // | x.m1();
+ // | // prints:
+ // | // B.m1
+ // | // A.m1
+ // | x.m2();
+ // | // prints:
+ // | // A.m2
+ // | // B.m2
+
+ // crack parameters
+ if(typeof className != "string"){
+ props = superclass;
+ superclass = className;
+ className = "";
+ }
+ props = props || {};
+
+ var proto, i, t, ctor, name, bases, chains, mixins = 1, parents = superclass;
+
+ // build a prototype
+ if(opts.call(superclass) == "[object Array]"){
+ // C3 MRO
+ bases = c3mro(superclass, className);
+ t = bases[0];
+ mixins = bases.length - t;
+ superclass = bases[mixins];
+ }else{
+ bases = [0];
+ if(superclass){
+ if(opts.call(superclass) == "[object Function]"){
+ t = superclass._meta;
+ bases = bases.concat(t ? t.bases : superclass);
+ }else{
+ err("base class is not a callable constructor.", className);
+ }
+ }else if(superclass !== null){
+ err("unknown base class. Did you use dojo.require to pull it in?", className);
+ }
+ }
+ if(superclass){
+ for(i = mixins - 1;; --i){
+ proto = forceNew(superclass);
+ if(!i){
+ // stop if nothing to add (the last base)
+ break;
+ }
+ // mix in properties
+ t = bases[i];
+ (t._meta ? mixOwn : mix)(proto, t.prototype);
+ // chain in new constructor
+ ctor = new Function;
+ ctor.superclass = superclass;
+ ctor.prototype = proto;
+ superclass = proto.constructor = ctor;
+ }
+ }else{
+ proto = {};
+ }
+ // add all properties
+ declare.safeMixin(proto, props);
+ // add constructor
+ t = props.constructor;
+ if(t !== op.constructor){
+ t.nom = cname;
+ proto.constructor = t;
+ }
+
+ // collect chains and flags
+ for(i = mixins - 1; i; --i){ // intentional assignment
+ t = bases[i]._meta;
+ if(t && t.chains){
+ chains = mix(chains || {}, t.chains);
+ }
+ }
+ if(proto["-chains-"]){
+ chains = mix(chains || {}, proto["-chains-"]);
+ }
+
+ // build ctor
+ t = !chains || !chains.hasOwnProperty(cname);
+ bases[0] = ctor = (chains && chains.constructor === "manual") ? simpleConstructor(bases) :
+ (bases.length == 1 ? singleConstructor(props.constructor, t) : chainedConstructor(bases, t));
+
+ // add meta information to the constructor
+ ctor._meta = {bases: bases, hidden: props, chains: chains,
+ parents: parents, ctor: props.constructor};
+ ctor.superclass = superclass && superclass.prototype;
+ ctor.extend = extend;
+ ctor.createSubclass = createSubclass;
+ ctor.prototype = proto;
+ proto.constructor = ctor;
+
+ // add "standard" methods to the prototype
+ proto.getInherited = getInherited;
+ proto.isInstanceOf = isInstanceOf;
+ proto.inherited = inheritedImpl;
+ proto.__inherited = inherited;
+
+ // add name if specified
+ if(className){
+ proto.declaredClass = className;
+ lang.setObject(className, ctor);
+ }
+
+ // build chains and add them to the prototype
+ if(chains){
+ for(name in chains){
+ if(proto[name] && typeof chains[name] == "string" && name != cname){
+ t = proto[name] = chain(name, bases, chains[name] === "after");
+ t.nom = name;
+ }
+ }
+ }
+ // chained methods do not return values
+ // no need to chain "invisible" functions
+
+ return ctor; // Function
+ }
+
+ /*=====
+ declare.__DeclareCreatedObject = {
+ // summary:
+ // dojo/_base/declare() returns a constructor `C`. `new C()` returns an Object with the following
+ // methods, in addition to the methods and properties specified via the arguments passed to declare().
+
+ inherited: function(name, args, newArgs){
+ // summary:
+ // Calls a super method.
+ // name: String?
+ // The optional method name. Should be the same as the caller's
+ // name. Usually "name" is specified in complex dynamic cases, when
+ // the calling method was dynamically added, undecorated by
+ // declare(), and it cannot be determined.
+ // args: Arguments
+ // The caller supply this argument, which should be the original
+ // "arguments".
+ // newArgs: Object?
+ // If "true", the found function will be returned without
+ // executing it.
+ // If Array, it will be used to call a super method. Otherwise
+ // "args" will be used.
+ // returns:
+ // Whatever is returned by a super method, or a super method itself,
+ // if "true" was specified as newArgs.
+ // description:
+ // This method is used inside method of classes produced with
+ // declare() to call a super method (next in the chain). It is
+ // used for manually controlled chaining. Consider using the regular
+ // chaining, because it is faster. Use "this.inherited()" only in
+ // complex cases.
+ //
+ // This method cannot me called from automatically chained
+ // constructors including the case of a special (legacy)
+ // constructor chaining. It cannot be called from chained methods.
+ //
+ // If "this.inherited()" cannot find the next-in-chain method, it
+ // does nothing and returns "undefined". The last method in chain
+ // can be a default method implemented in Object, which will be
+ // called last.
+ //
+ // If "name" is specified, it is assumed that the method that
+ // received "args" is the parent method for this call. It is looked
+ // up in the chain list and if it is found the next-in-chain method
+ // is called. If it is not found, the first-in-chain method is
+ // called.
+ //
+ // If "name" is not specified, it will be derived from the calling
+ // method (using a methoid property "nom").
+ //
+ // example:
+ // | var B = declare(A, {
+ // | method1: function(a, b, c){
+ // | this.inherited(arguments);
+ // | },
+ // | method2: function(a, b){
+ // | return this.inherited(arguments, [a + b]);
+ // | }
+ // | });
+ // | // next method is not in the chain list because it is added
+ // | // manually after the class was created.
+ // | B.prototype.method3 = function(){
+ // | console.log("This is a dynamically-added method.");
+ // | this.inherited("method3", arguments);
+ // | };
+ // example:
+ // | var B = declare(A, {
+ // | method: function(a, b){
+ // | var super = this.inherited(arguments, true);
+ // | // ...
+ // | if(!super){
+ // | console.log("there is no super method");
+ // | return 0;
+ // | }
+ // | return super.apply(this, arguments);
+ // | }
+ // | });
+ return {}; // Object
+ },
+
+ getInherited: function(name, args){
+ // summary:
+ // Returns a super method.
+ // name: String?
+ // The optional method name. Should be the same as the caller's
+ // name. Usually "name" is specified in complex dynamic cases, when
+ // the calling method was dynamically added, undecorated by
+ // declare(), and it cannot be determined.
+ // args: Arguments
+ // The caller supply this argument, which should be the original
+ // "arguments".
+ // returns:
+ // Returns a super method (Function) or "undefined".
+ // description:
+ // This method is a convenience method for "this.inherited()".
+ // It uses the same algorithm but instead of executing a super
+ // method, it returns it, or "undefined" if not found.
+ //
+ // example:
+ // | var B = declare(A, {
+ // | method: function(a, b){
+ // | var super = this.getInherited(arguments);
+ // | // ...
+ // | if(!super){
+ // | console.log("there is no super method");
+ // | return 0;
+ // | }
+ // | return super.apply(this, arguments);
+ // | }
+ // | });
+ return {}; // Object
+ },
+
+ isInstanceOf: function(cls){
+ // summary:
+ // Checks the inheritance chain to see if it is inherited from this
+ // class.
+ // cls: Function
+ // Class constructor.
+ // returns:
+ // "true", if this object is inherited from this class, "false"
+ // otherwise.
+ // description:
+ // This method is used with instances of classes produced with
+ // declare() to determine of they support a certain interface or
+ // not. It models "instanceof" operator.
+ //
+ // example:
+ // | var A = declare(null, {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ // | var B = declare(null, {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ // | var C = declare([A, B], {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ // | var D = declare(A, {
+ // | // constructor, properties, and methods go here
+ // | // ...
+ // | });
+ // |
+ // | var a = new A(), b = new B(), c = new C(), d = new D();
+ // |
+ // | console.log(a.isInstanceOf(A)); // true
+ // | console.log(b.isInstanceOf(A)); // false
+ // | console.log(c.isInstanceOf(A)); // true
+ // | console.log(d.isInstanceOf(A)); // true
+ // |
+ // | console.log(a.isInstanceOf(B)); // false
+ // | console.log(b.isInstanceOf(B)); // true
+ // | console.log(c.isInstanceOf(B)); // true
+ // | console.log(d.isInstanceOf(B)); // false
+ // |
+ // | console.log(a.isInstanceOf(C)); // false
+ // | console.log(b.isInstanceOf(C)); // false
+ // | console.log(c.isInstanceOf(C)); // true
+ // | console.log(d.isInstanceOf(C)); // false
+ // |
+ // | console.log(a.isInstanceOf(D)); // false
+ // | console.log(b.isInstanceOf(D)); // false
+ // | console.log(c.isInstanceOf(D)); // false
+ // | console.log(d.isInstanceOf(D)); // true
+ return {}; // Object
+ },
+
+ extend: function(source){
+ // summary:
+ // Adds all properties and methods of source to constructor's
+ // prototype, making them available to all instances created with
+ // constructor. This method is specific to constructors created with
+ // declare().
+ // source: Object
+ // Source object which properties are going to be copied to the
+ // constructor's prototype.
+ // description:
+ // Adds source properties to the constructor's prototype. It can
+ // override existing properties.
+ //
+ // This method is similar to dojo.extend function, but it is specific
+ // to constructors produced by declare(). It is implemented
+ // using dojo.safeMixin, and it skips a constructor property,
+ // and properly decorates copied functions.
+ //
+ // example:
+ // | var A = declare(null, {
+ // | m1: function(){},
+ // | s1: "Popokatepetl"
+ // | });
+ // | A.extend({
+ // | m1: function(){},
+ // | m2: function(){},
+ // | f1: true,
+ // | d1: 42
+ // | });
+ }
+ };
+ =====*/
+
+ // For back-compat, remove for 2.0
+ dojo.safeMixin = declare.safeMixin = safeMixin;
+ dojo.declare = declare;
+
+ return declare;
+});