summaryrefslogtreecommitdiff
path: root/vendor/phpseclib/phpseclib/phpseclib/Crypt/EC/Curves/Ed25519.php
blob: 9d3de684f50bca017b1f398fab172ab125031107 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
<?php

/**
 * Ed25519
 *
 * PHP version 5 and 7
 *
 * @author    Jim Wigginton <[email protected]>
 * @copyright 2017 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 */

namespace phpseclib3\Crypt\EC\Curves;

use phpseclib3\Crypt\EC\BaseCurves\TwistedEdwards;
use phpseclib3\Crypt\Hash;
use phpseclib3\Crypt\Random;
use phpseclib3\Math\BigInteger;

class Ed25519 extends TwistedEdwards
{
    const HASH = 'sha512';
    /*
      Per https://tools.ietf.org/html/rfc8032#page-6 EdDSA has several parameters, one of which is b:

      2.   An integer b with 2^(b-1) > p.  EdDSA public keys have exactly b
           bits, and EdDSA signatures have exactly 2*b bits.  b is
           recommended to be a multiple of 8, so public key and signature
           lengths are an integral number of octets.

      SIZE corresponds to b
    */
    const SIZE = 32;

    public function __construct()
    {
        // 2^255 - 19
        $this->setModulo(new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED', 16));
        $this->setCoefficients(
            // -1
            new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC', 16), // a
            // -121665/121666
            new BigInteger('52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3', 16)  // d
        );
        $this->setBasePoint(
            new BigInteger('216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A', 16),
            new BigInteger('6666666666666666666666666666666666666666666666666666666666666658', 16)
        );
        $this->setOrder(new BigInteger('1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED', 16));
        // algorithm 14.47 from http://cacr.uwaterloo.ca/hac/about/chap14.pdf#page=16
        /*
        $this->setReduction(function($x) {
            $parts = $x->bitwise_split(255);
            $className = $this->className;

            if (count($parts) > 2) {
                list(, $r) = $x->divide($className::$modulo);
                return $r;
            }

            $zero = new BigInteger();
            $c = new BigInteger(19);

            switch (count($parts)) {
                case 2:
                    list($qi, $ri) = $parts;
                    break;
                case 1:
                    $qi = $zero;
                    list($ri) = $parts;
                    break;
                case 0:
                    return $zero;
            }
            $r = $ri;

            while ($qi->compare($zero) > 0) {
                $temp = $qi->multiply($c)->bitwise_split(255);
                if (count($temp) == 2) {
                    list($qi, $ri) = $temp;
                } else {
                    $qi = $zero;
                    list($ri) = $temp;
                }
                $r = $r->add($ri);
            }

            while ($r->compare($className::$modulo) > 0) {
                $r = $r->subtract($className::$modulo);
            }
            return $r;
        });
        */
    }

    /**
     * Recover X from Y
     *
     * Implements steps 2-4 at https://tools.ietf.org/html/rfc8032#section-5.1.3
     *
     * Used by EC\Keys\Common.php
     *
     * @param BigInteger $y
     * @param boolean $sign
     * @return object[]
     */
    public function recoverX(BigInteger $y, $sign)
    {
        $y = $this->factory->newInteger($y);

        $y2 = $y->multiply($y);
        $u = $y2->subtract($this->one);
        $v = $this->d->multiply($y2)->add($this->one);
        $x2 = $u->divide($v);
        if ($x2->equals($this->zero)) {
            if ($sign) {
                throw new \RuntimeException('Unable to recover X coordinate (x2 = 0)');
            }
            return clone $this->zero;
        }
        // find the square root
        /* we don't do $x2->squareRoot() because, quoting from
           https://tools.ietf.org/html/rfc8032#section-5.1.1:

           "For point decoding or "decompression", square roots modulo p are
            needed.  They can be computed using the Tonelli-Shanks algorithm or
            the special case for p = 5 (mod 8).  To find a square root of a,
            first compute the candidate root x = a^((p+3)/8) (mod p)."
         */
        $exp = $this->getModulo()->add(new BigInteger(3));
        $exp = $exp->bitwise_rightShift(3);
        $x = $x2->pow($exp);

        // If v x^2 = -u (mod p), set x <-- x * 2^((p-1)/4), which is a square root.
        if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
            $temp = $this->getModulo()->subtract(new BigInteger(1));
            $temp = $temp->bitwise_rightShift(2);
            $temp = $this->two->pow($temp);
            $x = $x->multiply($temp);
            if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
                throw new \RuntimeException('Unable to recover X coordinate');
            }
        }
        if ($x->isOdd() != $sign) {
            $x = $x->negate();
        }

        return [$x, $y];
    }

    /**
     * Extract Secret Scalar
     *
     * Implements steps 1-3 at https://tools.ietf.org/html/rfc8032#section-5.1.5
     *
     * Used by the various key handlers
     *
     * @param string $str
     * @return array
     */
    public function extractSecret($str)
    {
        if (strlen($str) != 32) {
            throw new \LengthException('Private Key should be 32-bytes long');
        }
        // 1.  Hash the 32-byte private key using SHA-512, storing the digest in
        //     a 64-octet large buffer, denoted h.  Only the lower 32 bytes are
        //     used for generating the public key.
        $hash = new Hash('sha512');
        $h = $hash->hash($str);
        $h = substr($h, 0, 32);
        // 2.  Prune the buffer: The lowest three bits of the first octet are
        //     cleared, the highest bit of the last octet is cleared, and the
        //     second highest bit of the last octet is set.
        $h[0] = $h[0] & chr(0xF8);
        $h = strrev($h);
        $h[0] = ($h[0] & chr(0x3F)) | chr(0x40);
        // 3.  Interpret the buffer as the little-endian integer, forming a
        //     secret scalar s.
        $dA = new BigInteger($h, 256);

        return [
            'dA' => $dA,
            'secret' => $str
        ];
    }

    /**
     * Encode a point as a string
     *
     * @param array $point
     * @return string
     */
    public function encodePoint($point)
    {
        list($x, $y) = $point;
        $y = $y->toBytes();
        $y[0] = $y[0] & chr(0x7F);
        if ($x->isOdd()) {
            $y[0] = $y[0] | chr(0x80);
        }
        $y = strrev($y);

        return $y;
    }

    /**
     * Creates a random scalar multiplier
     *
     * @return \phpseclib3\Math\PrimeField\Integer
     */
    public function createRandomMultiplier()
    {
        return $this->extractSecret(Random::string(32))['dA'];
    }

    /**
     * Converts an affine point to an extended homogeneous coordinate
     *
     * From https://tools.ietf.org/html/rfc8032#section-5.1.4 :
     *
     * A point (x,y) is represented in extended homogeneous coordinates (X, Y, Z, T),
     * with x = X/Z, y = Y/Z, x * y = T/Z.
     *
     * @return \phpseclib3\Math\PrimeField\Integer[]
     */
    public function convertToInternal(array $p)
    {
        if (empty($p)) {
            return [clone $this->zero, clone $this->one, clone $this->one, clone $this->zero];
        }

        if (isset($p[2])) {
            return $p;
        }

        $p[2] = clone $this->one;
        $p[3] = $p[0]->multiply($p[1]);

        return $p;
    }

    /**
     * Doubles a point on a curve
     *
     * @return FiniteField[]
     */
    public function doublePoint(array $p)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p)) {
            return [];
        }

        if (!isset($p[2])) {
            throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
        }

        // from https://tools.ietf.org/html/rfc8032#page-12

        list($x1, $y1, $z1, $t1) = $p;

        $a = $x1->multiply($x1);
        $b = $y1->multiply($y1);
        $c = $this->two->multiply($z1)->multiply($z1);
        $h = $a->add($b);
        $temp = $x1->add($y1);
        $e = $h->subtract($temp->multiply($temp));
        $g = $a->subtract($b);
        $f = $c->add($g);

        $x3 = $e->multiply($f);
        $y3 = $g->multiply($h);
        $t3 = $e->multiply($h);
        $z3 = $f->multiply($g);

        return [$x3, $y3, $z3, $t3];
    }

    /**
     * Adds two points on the curve
     *
     * @return FiniteField[]
     */
    public function addPoint(array $p, array $q)
    {
        if (!isset($this->factory)) {
            throw new \RuntimeException('setModulo needs to be called before this method');
        }

        if (!count($p) || !count($q)) {
            if (count($q)) {
                return $q;
            }
            if (count($p)) {
                return $p;
            }
            return [];
        }

        if (!isset($p[2]) || !isset($q[2])) {
            throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
        }

        if ($p[0]->equals($q[0])) {
            return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
        }

        // from https://tools.ietf.org/html/rfc8032#page-12

        list($x1, $y1, $z1, $t1) = $p;
        list($x2, $y2, $z2, $t2) = $q;

        $a = $y1->subtract($x1)->multiply($y2->subtract($x2));
        $b = $y1->add($x1)->multiply($y2->add($x2));
        $c = $t1->multiply($this->two)->multiply($this->d)->multiply($t2);
        $d = $z1->multiply($this->two)->multiply($z2);
        $e = $b->subtract($a);
        $f = $d->subtract($c);
        $g = $d->add($c);
        $h = $b->add($a);

        $x3 = $e->multiply($f);
        $y3 = $g->multiply($h);
        $t3 = $e->multiply($h);
        $z3 = $f->multiply($g);

        return [$x3, $y3, $z3, $t3];
    }
}